Macromolecular Crystallography

Breakout Session

Larry Shapiro, Lonny Berman, Vivian Stojanoff

Outline of the Session

Session Chair: Larry Shapiro

Wayne Hendrickson "Challenges in Biological Crystallography"

Paula Fitzgerald "Practical Experiences in Running a Shared

Ownership Beam line"

Elizabeth Duke "Macromolecular Crystallography and Diamond –

Exciting Prospects with a Third Generation Source"

Panel Discussion Moderator: LeemorJoshua-Tor

Wayne Hendrickson, Paula Fitzgerald, Elizabeth Duke, Chris Lima, Larry Shapiro and Lonny Berman

Storage Ring Layout

Building Areas	Area [SF]			
	First Flr	Second	Total	
Office Block	11,055	8,945	20,000	
Utility Corridor	14,578		14,578	
Accelerator Tunnel	51,563		51,563	
Experimental Floor	111,230		111,230	
Office/Lab	64,173	64,173	128,346	
Linac Vault - Kly Gallery	12,493	6,068	18,561	
			344,278	

Medium Energy Storage Ring

→ 3 GeV, 24 Fold TBA

→ ~ 10²¹ photons/sec/0.1%bw/mm²/mrad²

→ ~ 10¹⁶ photons/sec/0.1%bw

→ pulse length 11 psec (13x less then NSLS)

→ Flux and Brightness stable to <1%</p>

Full Energy Injection

Linac in this model

Labs and Offices Near Beam lines

Crane coverage over limited Assembly Area

Labs & Common Areas

Linac Below grade to use earth shielding

15 March 2004

Proposed Bio-Molecular Crystallography Beam Lines

Operating Energy range: $\sim 3 - 30 \text{ KeV}$

Superconducting Undulators: U14 (5 m long and 14 mm period)

Grazing incidence angle: 3mrad

Si (111) double crystal monochromator

Kirk-Baez mirrors: vertical demagnification 6 (2.5): 1

horizontal demagnification 7.75(2.8):1

Suggested Modes of Operation

Challenging scientific questions,Virus, Membranes, Molecular Machines

> User Access

★ Structural "-omics"

★ Drug-Development

Performances of NSLS, APS, NSLS-II Beam lines

	NSLS	NSLS	APS	NSLS-II
	X25	X29	UA	U14
Monochromatic Flux @ 12KeV (ph/sec)	3x10 ¹²	3x10 ¹²	1.5×10^{13}	2.4x10 ¹⁴
Energy resolution w/ Si(111) (eV)	12	4	1.8	1.8
Horizontal focus size (mm)	0.7	0.25	0.06	0.075
Vertical focus size (mm)	0.2	0.1	0.03	0.028
Monochromatic intensity (ph/sec/mm ²)	2x10 ¹³	1.2x10 ¹⁴	8x10 ¹⁵	1.2x10 ¹⁷
Horizontal divergence at focus (mrad)	1	1	0.35	0.22
Vertical divergence at focus (mrad)	0.15	0.2	0.1	0.07
Time to 1/e crystal "death" (s)	2500	420	6	0.4

Challenges

The high brightness and flux of the proposed machine and the short lifetime of the samples in such conditions pose new technical challenges

Beam line requirements

End station design

Control and Automation

Detectors

Needs of a diverse User Community need to be addressed

To address these requirements

NSLS II beam lines will incorporate fully automated controls. The *goal* is an end – to – end characterization capability. This could be achieved with a two layer system in which the top (artificial intelligence) layer reasons symbolically with the monitoring and diagnostic sensors and the bottom layer (procedural control) translates them in a set of actuator adjustments

Currently under development:

automated sample changer

artificial intelligence pattern recognition

What we would like to hear your thoughts:

★Beam line issues: how many, mixture of ID and BM, optics

★End Stations: mixture of reconfigurable and fix setup stations
detectors
automation
specialized instrumentation (spectroscopy, lasers, pressure
cells, magnetic field, etc.)
specialized support infrastructure (hazard levels, Lab space)

★User issues: support, training quality of life (housing, food facilities, transportation, etc)

The Machine

	NSLSII	NSLS
Energy (GeV)	3.0	2.8
Current (mA)	500	280
RF Frequency (MHz)	500	52.88
Emittance $(\varepsilon_x, \varepsilon_y)$ (nm)	1.5, 0.008	78, 0.133
Beam size (σ_x, σ_y) (µm)	83, 4.2	300, 6
Divergence (σ_x, σ_y) , (µrad)	18, 1.8	260, 35
Bunch Length (rms) (psec)	11	141
Circumference (m)	620	170.1
Number of Insertion Devices	21	6

The Machine

Electron Energy 3.0 GeV Current 500 mA

Circumference 620 (m)

Number of ID's > 20

Top off operation

Superconducting small gap undulators

Upgrade potential energy recovery linac

15 March 2004

Floor Layout

